## Genetics Notes

These notes go along with the following lecture videos: Genes, Alleles, and Genotypes, Punnett Squares with Genetics Practice Questions, and Non-Mendelian Genetics. Fill them in as you move through the videos and answer questions.

## VIDEO FOR THIS SECTION: Genes, Alleles, and Genotypes, Punnett Squares with Genetics Practice Questions

## What is Genetics?

- The science that deal with heredity and variation.
- Heredity: the $\qquad$ from parents to offspring
- Variation: similarities and differences


## What is a Gene?

$\rightarrow \quad$ Gene $=$ segment of DNA on a chromosome that controls a $\qquad$

- Genes are made up of DNA and act as $\qquad$
- Genes are $\qquad$ -onto offspring
- Every person has two copies of each gene, one inherited $\qquad$
$\rightarrow$ Trait: a quality of characteristic
$\rightarrow \quad$ Different forms of each gene are called $\qquad$ .
- You inherit one from each parent.
$\rightarrow \quad$ Letters represent Alleles
- Allele $\mathrm{H}=$ black hair
- Allele h = brown hair
$\rightarrow \quad$ Capital letters $=$ dominant alleles
$\rightarrow \quad$ Lowercase letters = recessive alleles
Dominant alleles are notated with capital letters


## Dominant vs. Recessive

Ex: $B=$ Brown

Recessive alleles are notated with lower case letters

- A dominant allele is expressed even if it is paired with a recessive allele.
- A recessive allele is only visible when paired with another recessive allele.


Ex: b=Grey

* *Remember, individuals get ONE allele from EACH PARENT


## Dominant Allele vs Recessive Allele


who will have blue eyes (recessive allele)

Because the allele for brown eyes is present, individual $B$ and

## Homozygous vs. Heterozygous



## VIDEO FOR THIS SECTION: Punnett Squares with Genetics Practice Questions

## Monohybrid Punnett Squares

$\square \quad$ Letters outside Punnett = possible gametes (egg/sperm) formed from meiosis
$\square \quad$ Letters inside Punnett = possible offspring

Practice: Red is dominant over white. Two heterozygous flowers are crossed. Use a Punnett square to determine the probability of one of their offspring having a red color.
 $\mathrm{R}=$ red $\mathrm{r}=$ white

- Predicted outcome of Punnett:
- Genotypic ratio of offspring:
$\square \quad$ Phenotypic ratio of offspring:
- Answer:

Practice: $\mathrm{H}=$ brown hair $\mathrm{h}=$ black hair. Determine the possible genotypes for each cross below:

1. Mom is Hh and Dad is hh

2. Mom is hh and Dad is HH

3. Mom is Hh and Dad is Hh


## Practice Monohybrid Cross

In pea plants, spherical seeds (S) are dominant to dented seeds (s). In a genetic cross of two plants that are heterozygous for the seed shape trait, what fraction of the offspring should have spherical seeds? Draw the Punnett Square.


Spherical Spherical

## Recessive Inheritance

Deafness is a recessive disorder.
D=normal
d=deaf
If we cross heterozygous parents with normal hearing, what will the Punnett Square look like? Draw a Punnett square.

Practice Questions: Draw Punnett squares to answer the questions.

1. In mussels, brown (B) coloring is dominant, and blue (b) coloring is recessive. If a blue mussel has two brown parents, what percentages of the total offspring of these brown parents are expected to be blue?
a. $100 \%$
b. $75 \%$
c. $50 \%$
d. $25 \%$
2. In cats, the allele for short hair (H) is dominant to the allele for long hair (h). If a heterozygous short-hair cat is crossed with a long-hair cat, what percentage of the offspring is expected to be heterozygous for hair length?
a. $0 \%$
b. $25 \%$
c. $50 \%$
d. 75 \%
3. In pigeons, the allele $\mathbf{B}$ produces ash-red feathers. The allele $\mathbf{b}$ produces blue feathers. The $\mathbf{B}$ allele is dominant to the $\mathbf{b}$ allele. A pigeon with genotype $\mathbf{B b}$ is crossed with a pigeon with the genotype $\mathbf{b b}$. What percent of the offspring are expected to have ash-red feathers?
a. $0 \%$
b. $25 \%$
c. $50 \%$
d. 100 \%

## Draw Punnett squares to answer the questions.

1. In mussels, brown (B) coloring is dominant, and blue (b) coloring is recessive. If a blue mussel has two brown parents, what percentages of the total offspring of these brown parents are expected to be blue?
a. $100 \%$
b. $75 \%$
c. $50 \%$
d. $25 \%$
2. In cats, the allele for short hair $(\mathbf{H})$ is dominant to the allele for long hair (h). If a heterozygous short-hair cat is crossed with a long-hair cat, what percentage of the offspring is expected to be heterozygous for hair length?
a. $0 \%$ b. $25 \%$ c. $50 \%$ d. $75 \%$
3. In pigeons, the allele $\mathbf{B}$ produces ash-red feathers. The allele $\mathbf{b}$ produces blue feathers. The $\mathbf{B}$ allele is dominant to the $\mathbf{b}$ allele. A pigeon with genotype $\mathbf{B b}$ is crossed with a pigeon with the genotype $\mathbf{b b}$. What percent of the offspring are expected to have ash-red feathers?
a. $0 \%$
b. 25 \%
c. 50 \%
d. 100 \%

## Non - Mendelian Genetics aka Complex Genetics

## Different types of Inheritance Patterns

Types of Inheritance:

1. Dominant/Recessive aka complete dominance
2. 
3. 
4. 
5. 

## Incomplete dominance

a. results in intermediate ( $\qquad$ ) phenotypes
b. Neither allele is dominant over the other
c. Both alleles are present in heterozygotes
d. often described as $\qquad$
e. No dominant allele

## Examples of incomplete dominance

Human Hair: If a straight-haired person and a curly haired person have a child, the child will likely have wavy hair

Flowers:

Crossing homozygous red flowers with homozygous white flowers produces heterozygotes that pink (blend of white and red)

## Codominance

- Many genes have more than two alleles in the population
- Expression of both alleles is observed as a distinct phenotype in the heterozygous individual
Often results in a spotting pattern





## Sample Questions 1 and 2:

Cow traits:
$\mathrm{BB}=$ black $\quad \mathrm{BW}=$ black and white $\quad \mathrm{WW}=$ white

1) Is this an example of incomplete dominance or codominance?
2) Two black and white cows are crossed. What are possible phenotypes, and their \%'s, for the offspring? (Draw a Punnet Square.)

## Sample Questions 3 and 4:

Cow traits:
$\mathrm{BB}=$ black $\quad \mathrm{BW}=$ grey $\quad \mathrm{WW}=$ white
3) Is this an example of incomplete dominance or codominance?
4) A black cow and a grey cow are crossed. What are possible phenotypes, and their \%'s, for the offspring?
(Draw a Punnet Square.)

## Multiple alleles

$\qquad$ alleles in the population

- individuals can carry any $\qquad$ of these alleles
- The $\qquad$ blood group has three alleles:
- leading to four phenotypes: type A, type B, type AB, and type O blood


## ABO Blood Type

- blood type gene is found on the 9th $\qquad$
- blood type results from $\qquad$ (A, B, or $O$ ) from each parent. 2 alleles total.
- Types A and B are dominant. Type O is recessive.

|  | mother |  |  |
| :---: | :---: | :---: | :---: |
| father | A | B | 0 |
| $A$ | $A A$ | $A B$ | $A O$ |
| $B$ | $B A$ | $B B$ | $B O$ |
| 0 | $O A$ | $O B$ | 00 |

alleles bloodtype

- Possible outcomes:
$A+A=A$
$A+O=A$
- AO genotype will have an A phenotype
$A+B=A B \quad \cdot \quad B O$ genotype will have an $B$ phenotype
$B+B=B \quad$. $O 0$ genotype will have an $O$ phenotype
$B+O=B$
$0+0=0$
$A B$ genotype will have an $A B$ phenotype


## Blood Type Practice

The police have rounded up the usual suspects in the latest rash of bookstore robberies. The thief got a nasty paper cut at the scene of the crime. The suspects are of blood types $O, A, B$ and $A B$. The blood at the crime scene contained O alleles. Which suspect therefore cannot have been involved? Explain.

## SEX CHROMOSOMES AND SEX-LINKED GENES

## Determining Sex in Humans

--Sex is determined by the father


## Sex-linked genes exhibit a unique pattern of inheritance

- Sex-linked genes are located on either of the sex chromosomes
- X-linked genes are $\qquad$ and mother to daughter
- X-linked genes are $\qquad$
- Y-linked genes are $\qquad$
Sex-linked (x) disorders affect mostly males
If a male inherits only one sex linked allele from his mother the allele will be expressed -----> $\mathbf{X}^{\boldsymbol{r}} \mathbf{Y}$
A woman must inherit $\qquad$ (one from each parent) and therefore 2 alleles $---->X^{R} X^{r}$ or $X^{r} X^{r}$ or $X^{R} X^{R}$


## Example of a sex-linked gene (x-linked gene)

Because the alleles are found on X chromosomes, we show them as a $\qquad$
Remember that females can only produce gametes with a $\qquad$ chromosome and males can produce gamete with $\qquad$ chromosome.


Hemophilia is a sex-linked ( $x$ ) trait
A high incidence of hemophilia plagued royal families of Europe.
-Queen Victoria of England carried the hemophilia allele $\mathbf{X}^{R} \mathbf{X}^{r}$

- She passed it onto one of her sons and two of her daughters (only her daughter Alice is shown)
-Via marriage, her grand daughters introduced the gene to royal families of Spain and Russia.



## More examples of sex-linked disorders

1. 
2. Duchenne muscular dystrophy

## Sex-linked genes Practice Problem

Neither Tom nor Sue has hemophilia, but their first son does. If the couple has a second child, what is the probability that this child will also have the disease? Draw a Punnett square as evidence for your response. Remember that x-linked alleles are notated with superscripts about the X .

## Polygenic inheritance

- A single characteristic may be influenced by
- Many genes influence one trait
- Skin color is affected by $\qquad$


Gametes $A B C \quad A B C$ $A b C$ $A b c$ $a B C$ $a B C$ abC abc

| F2 generation | $A B C$ | 6 | 5 | 5 | 4 | 5 | 4 | 4 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $A B C$ | 5 | 4 | 4 | 3 | 4 | 3 | 3 | 2 |  |
| eggs $A b C$ | 5 | 4 | 4 | 3 | 4 | 3 | 3 | 2 |  |
| $A B C$ | 4 | 3 | 3 | 2 | 3 | 2 | 2 | 1 |  |
| $a B C$ | 5 | 4 | 4 | 3 | 4 | 3 | 3 | 2 |  |
| $a B C$ | 4 | 3 | 3 | 2 | 3 | 2 | 2 | 1 |  |
| $a b C$ | 4 | 3 | 3 | 2 | 3 | 2 | 2 | 1 |  |
| $a b c$ | 3 | 2 | 2 | 1 | 2 | 1 | 1 | 0 |  |



