Binary Fission

Celle

Prokaryotes vs. Eukaryotes

PROKARYOTES

- Use Binary Fission
- Have no nucleus
- Chromosome in a single loop

EUKARYOTES

- Use Cell Cycle (Mitosis)
- Have nucleus
- Linear Chromosome

Prokaryotes vs. Eukaryotes

Both prokaryotes and eukaryotes use a type a cellular reproduction known as asexual reproduction

Asexual Reproduction

PROS:

- Fast!
- Easy!

CONS:

 No genetic diversity (offspring are essentially clones)

 Process of cell division that produces identical offspring in prokaryotic cells like bacteria.

Binary Fission Step #1

 Circular DNA unzips and copies itself according to base pairing rules of each complementary strand

Binary Fission Step #2

Cell Splits

Bacteria need to multiply quickly:

Binary Fission

Binary Fission in prokaryotes is fast, because they have no nucleus to break down or organelles to copy.

The Cell Cycle

- Living things (like you) are often made of trillions of cells.
- These cells are often:
 - Dying
 - Being worn away
 - The organism may be growing and need more cells.

Cell Cycle

The repeated sequence of growth and division required to strategically maneuver the nucleus, chromosomes and organelles before the cell can properly divide.

Different forms of DNA

- 1) Chromosomes
- 2) Chromatin
- 3) Chromatids

- Definition: Supercoiled DNA
- Structure:
 a single coiled DNA molecule;

OR

After DNA replication it may be two coiled DNA molecules held together at a centromere.

<u>Chromosomes</u>

Chromatin

– DNA in the nucleus that is loose, "spaghetti-like" structure present only during **Interphase** of the cell cycle. -DNA before it is supercoiled into chromosomes

Chromatin vs. Chromosomes

Chromosomes

<u>Chromatids</u>

- Each DNA strand in the chromosome ...therefore, each replicated chromosome has 2 chromatids.
- Since the DNA in each replicated chromatid is identical, they are referred to as sister chromatids.
- Sister chromatids are held together by a centromere.

NOTE: Chromosomes, Chromatin and Chromatids are all made of the same DNA, it's just different shapes at different times of the cell cycle.

Interphase:

(Time in between cell divisions)

Consists of:

- G1 (Gap/Growth 1):
- S (Synthesis):
- G2 (Gap/Growth 2):

- G1 (Gap 1 or Growth 1):
 - Cell growth All routine functions of the cell. "Cell is doing what it is meant to be doing."
 - DNA in the form of chromatin.

S (Synthesis):
– DNA Replication
• Amount of chromatin in the nucleus doubles.

• G2 (Gap 2 or Growth 2): – Growth and Preparation for Mitosis

- Organelles (in particular centrioles) duplicate.
- Cell growth reaches a point where Mitosis is triggered.
- DNA in the form of chromatin.

Phases of the Cell Cycle Mitosis and Cytokinesis are not part of Interphase, because the cell is actively dividing here.

- . M Mitosis:
 - DNA forms into chromosomes.
 Nucleus divides.
- . C Cytokinesis:
 - Cytoplasm divides into 2 cells each with its own nucleus.
 DNA turns back into chromatin.

- G1 (Gap 1 or Growth 1):
 - Cell growth
 - All routine functions of the cell. "Cell is doing what it is meant to be doing."
 - DNA in the form of chromatin.
- S (Synthesis):
 - DNA Replication
 - Amount of chromatin in the nucleus duplicates.
- G2 (Gap 2 or Growth 2):
 - Growth and Preparation for Mitosis
 - Organelles (in particular centrioles) duplicate. Cell growth reaches a point where Mitosis is triggered.
 - DNA in the form of chromatin.
- M Mitosis:
 - DNA forms into chromosomes. Nucleus divides.
- C Cytokinesis:
 - Cytoplasm divides into 2 cells each with its own nucleus. DNA turns back into chromatin.